

ADVANCED SUBSIDIARY GCE MATHEMATICS

Core Mathematics 2

WEDNESDAY 9 JANUARY 2008

Afternoon Time: 1 hour 30 minutes

4722/01

Additional materials: Answer Booklet (8 pages) List of Formulae (MF1)

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- You are reminded of the need for clear presentation in your answers.

This document consists of 4 printed pages.

© OCR 2008 [D/102/2694]

OCR is an exempt Charity

2

The diagram shows a sector AOB of a circle with centre O and radius 11 cm. The angle AOB is 0.7 radians. Find the area of the segment shaded in the diagram. [4]

2 Use the trapezium rule, with 3 strips each of width 2, to estimate the value of

$$\int_{1}^{7} \sqrt{x^2 + 3} \, \mathrm{d}x.$$
 [4]

- 3 Express each of the following as a single logarithm:
 - (i) $\log_a 2 + \log_a 3$, [1]

(ii)
$$2\log_{10} x - 3\log_{10} y$$
. [3]

1

In the diagram, angle $BDC = 50^{\circ}$ and angle $BCD = 62^{\circ}$. It is given that AB = 10 cm, AD = 20 cm and BC = 16 cm.

- (i) Find the length of *BD*. [2]
- (ii) Find angle *BAD*. [3]
- 5 The gradient of a curve is given by $\frac{dy}{dx} = 12\sqrt{x}$. The curve passes through the point (4, 50). Find the equation of the curve. [6]

6 A sequence of terms u_1, u_2, u_3, \ldots is defined by

$$u_n = 2n + 5$$
, for $n \ge 1$.

- (i) Write down the values of u_1 , u_2 and u_3 . [2]
- (ii) State what type of sequence it is. [1]

(iii) Given that
$$\sum_{n=1}^{N} u_n = 2200$$
, find the value of N. [5]

The diagram shows part of the curve $y = x^2 - 3x$ and the line x = 5.

- (i) Explain why $\int_0^5 (x^2 3x) dx$ does not give the total area of the regions shaded in the diagram. [1]
- (ii) Use integration to find the exact total area of the shaded regions. [7]
- 8 The first term of a geometric progression is 10 and the common ratio is 0.8.
 - (i) Find the fourth term.

[2]

- (ii) Find the sum of the first 20 terms, giving your answer correct to 3 significant figures. [2]
- (iii) The sum of the first N terms is denoted by S_N , and the sum to infinity is denoted by S_{∞} . Show that the inequality $S_{\infty} - S_N < 0.01$ can be written as

$$0.8^N < 0.0002$$
,

and use logarithms to find the smallest possible value of N. [7]

9 (i)

Fig. 1 shows the curve $y = 2 \sin x$ for values of x such that $-180^\circ \le x \le 180^\circ$. State the coordinates of the maximum and minimum points on this part of the curve. [2]

(ii)

Fig. 2 shows the curve $y = 2 \sin x$ and the line y = k. The smallest positive solution of the equation $2 \sin x = k$ is denoted by α . State, in terms of α , and in the range $-180^\circ \le x \le 180^\circ$,

- (a) another solution of the equation $2\sin x = k$, [1]
- (b) one solution of the equation $2 \sin x = -k$.
- (iii) Find the x-coordinates of the points where the curve $y = 2 \sin x$ intersects the curve $y = 2 3 \cos^2 x$, for values of x such that $-180^\circ \le x \le 180^\circ$. [6]

10 (i) Find the binomial expansion of $(2x + 5)^4$, simplifying the terms. [4]

(ii) Hence show that $(2x + 5)^4 - (2x - 5)^4$ can be written as

$$320x^3 + kx$$
,

where the value of the constant k is to be stated.

(iii) Verify that x = 2 is a root of the equation

$$(2x+5)^4 - (2x-5)^4 = 3680x - 800,$$

and find the other possible values of *x*.

[6]

[2]

[1]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

4722 Core Mathematics 2

1area of sector = $\sqrt{x} \times 11^2 \times 0.7$ = 42.35 area of triangle = $\sqrt{x} \times 11^2 \times 0.7$ = 42.35 = 33.7MI All A			Mark To	otal
Image: Constraint of the system of the sy	1	area of sector = $\frac{1}{2} \times 11^2 \times 0.7$ = 42.35 area of triangle = $\frac{1}{2} \times 11^2 \times \sin 0.7 = 38.98$ hence area of segment = 42.35 - 38.98 = 3.37	M1 A1 M1 A1 4	Attempt sector area using $(\frac{1}{2})r^2\theta$ Obtain 42.35, or unsimplified equiv, soiAttempt triangle area using $\frac{1}{2}absinC$ or equiv, andsubtract from attempt at sectorObtain 3.37, or better
2area $\approx \frac{1}{2} \times 2 \times \left[2 + 2\left(\sqrt{12} + \sqrt{28}\right) + \sqrt{52}\right]$ M1Attempt y-values at $x = 1, 3, 5, 7$ only Correct trapezium rule, any h , for their y values to find area between $x = 1$ and $x = 7$ Correct h (so if or their y values) Obtain 26.7 or better (correct working only)3(i) $\log_{\pi} 6$ B11State $\log_{\pi} 6$ cwo(ii) $2\log_{0} x - 3\log_{0} y = \log_{0} x^{2} - \log_{0} y^{3}$ $= \log_{10} \frac{x^{2}}{y^{3}}$ M1 M1*Use $b \log a = \log a^{a}$ at least once4(i) $\frac{BD}{\sin 62} = \frac{16}{\sin 50}$ $BD = 18.4 \text{ cm}$ M1 Attempt to use correct sine rule in ΔBCD , or equiv.4(ii) $\frac{BD}{\sin 62} = \frac{16}{\sin 50}$ $BD = 18.4 \text{ cm}$ M1 A1Attempt to use correct cosine rule in ΔBCD , or equiv.5 $\int 12x^{\frac{1}{2}} dx = 8x^{\frac{3}{2}}$ M1 A1Attempt to integrate5 $\int 12x^{\frac{1}{4}} dx = 8x^{\frac{3}{4}} + c$ $y = 8x^{\frac{3}{4}} - 14$ M1 Attempt to integrateAttempt following $kx^{\frac{1}{2}}$ only5 $\int 12x^{\frac{1}{4}} dx = 8x^{\frac{3}{4}} + c$ $y = 8x^{\frac{3}{4}} - 14$ M1 Attempt to integrateAttempt following $kx^{\frac{1}{2}}$ only6M1 Attempt on integrateAttempt following $kx^{\frac{1}{2}}$ onlyState $y = 8x^{\frac{3}{4}} - 14$ Attempt on $x = 0$ At a f, as long as single power of x			4]
≈ 26.7 $MI = 1 \text{ and } x = 7$ $MI = 1 \text{ and } x = 7$ $Correct trapezium rule, any h, for their y values to find area between x = 1 and x = 7$ $Correct h (soi) for their y values Obtain 26.7 or better (correct working only)$ $\boxed{4}$ $\boxed{4}$ $(i) \log_{x} 6$ $(ii) 2\log_{0} x - 3\log_{0} y = \log_{0} x^{2} - \log_{0} y^{3}$ $= \log_{10} \frac{x^{2}}{y^{3}}$ $MI = 1 \text{ State } \log_{a} e \log a^{b} a \text{ least once}$ $\boxed{4}$ $WI = b \log a - \log b = \log^{7/b}$ $MI = 0 \text{ Use } \log a - \log b = \log^{7/b}$ $MI = 0 \text{ Use } \log a - \log b = \log^{7/b}$ $MI = 0 \text{ Obtain } \log_{10} \frac{x^{2}}{y^{3}} \text{ evo}$ $\boxed{4}$ $\boxed{4}$ $(i) \frac{BD}{\sin 62} = \frac{16}{\sin 50}$ $BD = 18.4 \text{ cm}$ $A1 = 3$ $Obtain 18.4 \text{ cm}$ $A1 = 2$ $Obtain 18.4 \text{ cm}$ $A1 = 3$ $Obtain 6.4^{0}$ $\boxed{5}$ $y - 8x^{\frac{1}{2}} + c \Rightarrow 50 - 8 \times 4^{\frac{1}{2}} + c$ $\Rightarrow c = -14$ $Hence \ y = 8x^{\frac{1}{2}} - 14$ MI $A1 = 4$ MI $A1 = 4$ MI MI $A1 = 7$ $A1 $	2	area $\approx \frac{1}{2} \times 2 \times \left\{2 + 2\left(\sqrt{12} + \sqrt{28}\right) + \sqrt{52}\right\}$	M1	Attempt <i>y</i> -values at $x = 1, 3, 5, 7$ only
≈ 26.7 $MI = A + A + A + A + A + A + A + A + A + A$			M1	Correct trapezium rule, any <i>h</i> , for their <i>y</i> values to find area between $x = 1$ and $x = 7$
Image: State log_a 6Image: State log_a 6 cwo3 (i) $\log_a 6$ B1 1State log_a 6 cwo(ii) $2\log_0 x - 3\log_0 y = \log_0 x^2 - \log_0 y^3$ M1*Use $\log a - \log b = \log a^b$ at least once $= \log_{10} \frac{x^2}{y^2}$ M1*Use $\log a - \log b = \log^{a/b}$ A1 3Obtain $\log_{10} \frac{x^2}{y^2}$ cwoImage: State log a - log b = log a^b at least once4(i) $\frac{BD}{\sin 62} = \frac{16}{\sin 50}$ M1 $BD = 18.4 \text{ cm}$ A1 2(ii) $18.4^2 = 10^2 + 20^2 - 2 \times 10 \times 20 \times \cos \theta$ M1 $\cos \theta = 0.3998$ Attempt to use correct cosine rule in ΔBD , or equiv. $\theta = 66.4^0$ M1Attempt to rearrange equation to find cos BAD (from $a^2 = b^2 + c^2 \pm (2)bc \cos A$) $\theta = 66.4^0$ M1 $y = 8x^{\frac{1}{2}} + c \Rightarrow 50 = 8 \times 4^{\frac{1}{2}} + c$ $y = 8x^{\frac{1}{2}} - 14$ M1Hence $y = 8x^{\frac{1}{2}} - 14$ $d = 0$ At a g as single power of x $d = 0$		≈ 26.7	M1 A1 4	Correct <i>h</i> (soi) for their <i>y</i> values Obtain 26.7 or better (correct working only)
3(i) $\log_a 6$ B11State $\log_a 6 \operatorname{cwo}$ (ii) $2\log_0 x - 3\log_0 y = \log_0 x^2 - \log_0 y^3$ $= \log_{10} \frac{x^2}{y^3}$ M1*Use $b\log a = \log a^b$ at least once $a = \log_{10} \frac{x^2}{y^3}$ M1*Use $\log a - \log b = \log^{a/b}$ A13Obtain $\log_{10} \frac{x^2}{y^3}$ cwo4(i) $\frac{BD}{\sin 62} = \frac{16}{\sin 50}$ $BD = 18.4 \operatorname{cm}$ M1Attempt to use correct sine rule in ΔBCD , or equiv.A12(ii) $18.4^2 = 10^2 + 20^2 - 2 x 10 x 20 x \cos \theta$ $\cos \theta = 0.3998$ M1 $\theta = 66.4^0$ A15 $\int 12x^{\frac{1}{2}} dx = 8x^{\frac{1}{2}}$ 5 $\int 12x^{\frac{1}{2}} dx = 8x^{\frac{1}{2}}$ M1Attempt to integrate $A1$ $y = 8x^{\frac{1}{2}} + c \Rightarrow 50 = 8 \times 4^{\frac{1}{2}} + c$ $y = 8x^{\frac{1}{2}} - 14$ Hence $y = 8x^{\frac{1}{2}} - 14$ G			4	
(ii) $2\log_{0}x - 3\log_{0}y = \log_{0}x^{2} - \log_{0}y^{3}$ $= \log_{10}\frac{x^{2}}{y^{2}}$ M1* Use $b\log a = \log a^{b}$ at least once Use $\log a - \log b = \log^{a}/b$ A1 Obtain $\log_{10}\frac{x^{2}}{y^{2}}$ evo 4 (i) $\frac{BD}{\sin 62} = \frac{16}{\sin 50}$ BD = 18.4 cm A1 2 Obtain 18.4 cm A1 2 Obtain 18.4 cm (ii) $18.4^{2} = 10^{2} + 20^{2} - 2 \times 10 \times 20 \times \cos \theta$ Cf d M1 Attempt to use correct sine rule in ΔBCD , or equiv. A1 2 Obtain 18.4 cm (ii) $18.4^{2} = 10^{2} + 20^{2} - 2 \times 10 \times 20 \times \cos \theta$ Cf d A1 3 Obtain $\log_{10}\frac{x^{2}}{y^{2}}$ evo 5 $\int 12x^{\frac{1}{2}}dx = 8x^{\frac{1}{2}}$ M1 Attempt to integrate A1 $$ Obtain 66.4^{0} Cf d M1 Attempt to integrate A1 $$ Obtain $8x^{\frac{2}{2}}$, with or without $+ c$ M1 Use (4, 50) to find c $x^{\frac{1}{2}}$ only A1 6 Contain $e^{x^{\frac{1}{2}}}$ only State $y = 8x^{\frac{1}{2}} - 14$ Contain $e^{x^{\frac{1}{2}}}$ only State $y = 8x^{\frac{1}{2}} - 14$ Contain $e^{x^{\frac{1}{2}}}$ only Contain $e^{x^{\frac{1}{2}}}$ Contain $e^{x^{\frac{1}{2}}}$ only Contain $e^{x^{\frac{1}{2}}}$ only Contain $e^{x^{\frac{1}{2}}}$ only Contain $e^{x^{\frac{1}{2}}}$ only Contain $e^{x^{\frac{1}{2}}} - 14$ Contain e^{x^{\frac	3	(i) $\log_a 6$	B1 1	State $\log_a 6$ cwo
$= \log_{10} \frac{x^2}{y^3}$ M1dep* Use log $a - \log b = \log^{a}/b$ A1 3 Obtain $\log_{10} \frac{x^2}{y^3}$ evo 4 4 (i) $\frac{BD}{\sin 62} = \frac{16}{\sin 50}$ BD = 18.4 cm (ii) $18.4^2 = 10^2 + 20^2 - 2 \times 10 \times 20 \times \cos \theta$ Cos $\theta = 0.3998$ M1 Attempt to use correct cosine rule in ΔBD Attempt to rearrange equation to find cos BAD (from $a^2 = b^2 + c^2 \pm (2)bc \cos A$) $\theta = 66.4^{\theta}$ A1 3 Obtain 6.4^{θ} S $\frac{5}{5} \int 12x^{\frac{1}{2}}dx = 8x^{\frac{3}{2}}$ M1 Attempt to integrate A1 $\frac{1}{\sqrt{2}} Obtain 18x^{\frac{1}{2}}$ M1 Attempt to integrate A1 $\frac{1}{\sqrt{2}} Obtain correct, unsimplified, integral following their f(x) A1 Obtain 8x^{\frac{1}{2}}, with or without +c y = 8x^{\frac{1}{2}} + c \Rightarrow 50 = 8 \times 4^{\frac{1}{2}} + c \frac{1}{\sqrt{2}} C = -14 Hence y = 8x^{\frac{1}{2}} - 14 M2 \frac{1}{\sqrt{2}} C = -14 \frac{1}{$		(ii) $2\log_0 x - 3\log_0 y = \log_0 x^2 - \log_0 y^3$	M1*	Use $b \log a = \log a^b$ at least once
A13Obtain $\log_{10} \frac{x^2}{y^3}$ cwo4(i) $\frac{BD}{\sin 62} = \frac{16}{\sin 50}$ $BD = 18.4 \text{ cm}$ M1Attempt to use correct sine rule in ΔBCD , or equiv.(ii) $18.4^2 = 10^2 + 20^2 - 2 \ge 10 \ge 20 \ge \cos \theta$ $\cos \theta = 0.3998$ M1Attempt to use correct cosine rule in ΔABD Attempt to rearrange equation to find $\cos BAD$ (from $a^2 = b^2 + c^2 \pm (2)bc \cos A$) $\theta = 66.4^0$ 5 $\int 12x^{\frac{1}{2}}dx = 8x^{\frac{1}{2}}$ M1Attempt to integrate $A1$ 5 $\int 12x^{\frac{1}{2}}dx = 8x^{\frac{1}{2}}$ M1Attempt to integrate $A1$ 6 $\int 12x^{\frac{1}{2}}dx = 8x^{\frac{1}{2}} + c \Rightarrow 50 = 8 \times 4^{\frac{1}{2}} + c$ M1Attempt to integrate $A1$ 6 $\int 12x^{\frac{1}{2}}dx = 8x^{\frac{1}{2}} - 14$ M1Attempt to integrate $A1$		$= \log_{10} \frac{x^2}{y^3}$	M1dep*	Use $\log a - \log b = \log \frac{a}{b}$
Image: A constraint of the system of the			A1 3	Obtain $\log_{10} \frac{x^2}{y^3}$ cwo
4 (i) $\frac{BD}{\sin 62} = \frac{16}{\sin 50}$ $BD = 18.4 \text{ cm}$ (i) $18.4^2 = 10^2 + 20^2 - 2 \times 10 \times 20 \times \cos \theta$ $\cos \theta = 0.3998$ $\theta = 66.4^0$ A1 3 Attempt to use correct sine rule in ΔBD , or equiv. A1 2 Obtain 18.4 cm Attempt to use correct cosine rule in ΔABD Attempt to rearrange equation to find cos BAD (from $a^2 = b^2 + c^2 \pm (2)bc \cos A$) $\theta = 66.4^0$ A1 3 Obtain 66.4^0 S 5 $\int 12x^{\frac{1}{2}}dx = 8x^{\frac{3}{2}}$ M1 Attempt to integrate A1 $$ Obtain correct, unsimplified, integral following their f(x) obtain $8x^{\frac{1}{2}}$, with or without $+ c$ $y = 8x^{\frac{3}{2}} + c \Rightarrow 50 = 8 \times 4^{\frac{3}{2}} + c$ $\Rightarrow c = -14$ Hence $y = 8x^{\frac{3}{2}} - 14$ Attempt to $x^{\frac{3}{2}} - 14$ Attempt to find c A1 6 A1 6 A1 7 A1 7			4]
$BD = 18.4 \text{ cm}$ (ii) $18.4^2 = 10^2 + 20^2 - 2 \times 10 \times 20 \times \cos \theta$ $\cos \theta = 0.3998$ $\theta = 66.4^0$ A1 A $M1$ Attempt to use correct cosine rule in ΔABD Attempt to rearrange equation to find cos BAD (from $a^2 = b^2 + c^2 \pm (2)bc \cos A$) $\theta = 66.4^0$ A1 B $M1$ Attempt to integrate $S = \frac{12}{5}$ A1 Attempt to integrate $A1 \sqrt{2}$ Obtain 66.4^0 B $M1$ Attempt to integrate $A1 \sqrt{2}$ Attempt to integrat	4	(i) $\frac{BD}{\sin 62} = \frac{16}{\sin 50}$	M1	Attempt to use correct sine rule in $\triangle BCD$, or equiv.
(ii) $18.4^2 = 10^2 + 20^2 - 2 \times 10 \times 20 \times \cos \theta$ $\cos \theta = 0.3998$ $\theta = 66.4^{0}$ M1 Attempt to use correct cosine rule in ΔABD Attempt to rearrange equation to find $\cos BAD$ (from $a^2 = b^2 + c^2 \pm (2)bc \cos A$) $\theta = 66.4^{0}$ S 5 $\int 12x^{\frac{1}{2}}dx = 8x^{\frac{3}{2}}$ M1 Attempt to integrate A1 $$ Obtain correct, unsimplified, integral following their f(x) A1 Obtain $8x^{\frac{1}{2}}$, with or without $+ c$ $y = 8x^{\frac{3}{2}} + c \Rightarrow 50 = 8 \times 4^{\frac{3}{2}} + c$ $\Rightarrow c = -14$ Hence $y = 8x^{\frac{3}{2}} - 14$ A1 A1 Attempt to integrate A1 $$ Obtain $c = -14$, following $kx^{\frac{3}{2}}$ only A1 A1 Attempt expression of x A1 Attempt to integrate		BD = 18.4 cm	A1 2	2 Obtain 18.4 cm
$\theta = 66.4^{0}$ Attempt to rearange equation to find cos <i>BAD</i> (from $a^{2} = b^{2} + c^{2} \pm (2)bc \cos A$) $\theta = 66.4^{0}$ A1 3 Obtain 66.4^{0} S $\int 12x^{\frac{1}{2}}dx = 8x^{\frac{3}{2}}$ M1 Attempt to integrate A1 $$ Obtain correct, unsimplified, integral following their f(x A1 Obtain $8x^{\frac{3}{2}}$, with or without $+ c$ Use (4, 50) to find c A1 $$ Obtain $c = -14$, following $kx^{\frac{3}{2}}$ only Hence $y = 8x^{\frac{3}{2}} - 14$ A1 $$ Obtain $c = -14$, following $kx^{\frac{3}{2}}$ only A1 $$ Obtain $c = -14$, as long as single power of x		(ii) $18.4^2 = 10^2 + 20^2 - 2 \times 10 \times 20 \times \cos \theta$	M1	Attempt to use correct cosine rule in $\triangle ABD$
$\theta = 66.4^{0}$ A1 3 Obtain 66.4 ⁰ 5 $\int 12x^{\frac{1}{2}}dx = 8x^{\frac{3}{2}}$ M1 Attempt to integrate A1 Obtain correct, unsimplified, integral following their f(x A1 Obtain $8x^{\frac{3}{2}}$, with or without + c $y = 8x^{\frac{3}{2}} + c \Rightarrow 50 = 8 \times 4^{\frac{3}{2}} + c$ $\Rightarrow c = -14$ Hence $y = 8x^{\frac{3}{2}} - 14$ M1 Use (4, 50) to find c A1 Obtain $c = -14$, following $kx^{\frac{3}{2}}$ only A1 6 State $y = 8x^{\frac{3}{2}} - 14$ aef, as long as single power of x I		$\cos\theta = 0.3998$	INI I	(from $a^2 = b^2 + c^2 \pm (2)bc \cos A$)
5 $\int 12x^{\frac{1}{2}} dx = 8x^{\frac{3}{2}}$ M1Attempt to integrate $5 \int 12x^{\frac{1}{2}} dx = 8x^{\frac{3}{2}}$ M1Attempt to integrate $A1$ Obtain correct, unsimplified, integral following their f(x $y = 8x^{\frac{3}{2}} + c \Rightarrow 50 = 8 \times 4^{\frac{3}{2}} + c$ M1Use (4, 50) to find c $\Rightarrow c = -14$ M1Use (4, 50) to find cHence $y = 8x^{\frac{3}{2}} - 14$ A16State $y = 8x^{\frac{3}{2}} - 14$ State $y = 8x^{\frac{3}{2}} - 14$ aef, as long as single power of x		$\theta = 66.4^{\circ}$	A1 3	$\mathbf{B} \text{Obtain 66.4}^{0}$
5 $\int 12x^{\frac{1}{2}} dx = 8x^{\frac{3}{2}}$ M1 Attempt to integrate A1 Obtain correct, unsimplified, integral following their f(x) $A1$ Obtain $8x^{\frac{3}{2}}$, with or without + c $y = 8x^{\frac{3}{2}} + c \Rightarrow 50 = 8 \times 4^{\frac{3}{2}} + c$ $\Rightarrow c = -14$ Hence $y = 8x^{\frac{3}{2}} - 14$ M1 Use (4, 50) to find c $A1$ Obtain $c = -14$, following $kx^{\frac{3}{2}}$ only A1 = 6 State $y = 8x^{\frac{3}{2}} - 14$ aef, as long as single power of x 6			5]
$y = 8x^{\frac{3}{2}} + c \Rightarrow 50 = 8 \times 4^{\frac{3}{2}} + c$ $\Rightarrow c = -14$ Hence $y = 8x^{\frac{3}{2}} - 14$ $A1\sqrt{$ A1 $A1\sqrt{$ A1 $A1\sqrt{$ A1 $A1\sqrt{$ A1 $A1\sqrt{$ A1}	5	$\int 12x^{\frac{1}{2}} dx = 8x^{\frac{3}{2}}$	M1	Attempt to integrate
$y = 8x^{\frac{3}{2}} + c \Rightarrow 50 = 8 \times 4^{\frac{3}{2}} + c$ $\Rightarrow c = -14$ Hence $y = 8x^{\frac{3}{2}} - 14$ A1 Obtain $8x^{\frac{2}{2}}$, with or without $+ c$ Use (4, 50) to find c Obtain $c = -14$, following $kx^{\frac{3}{2}}$ only A1 Obtain $c = -14$, following $kx^{\frac{3}{2}}$ only A1 Obtain $c = 8x^{\frac{3}{2}} - 14$ A1 Obtain $c = -14$, following $kx^{\frac{3}{2}}$ only A1 Obtain $c = 8x^{\frac{3}{2}} - 14$ Obtain $c = -14$, following $kx^{\frac{3}{2}}$ only A1 Obtain $c = -14$, following $kx^{\frac{3}{2}}$ only Obtain $c = -14$, following			A1√	Obtain correct, unsimplified, integral following their $f(x)$
$y = 8x^{\frac{1}{2}} + c \Longrightarrow 50 = 8 \times 4^{\frac{1}{2}} + c$ $\Rightarrow c = -14$ Hence $y = 8x^{\frac{3}{2}} - 14$ M1 Use (4, 50) to find c Obtain $c = -14$, following $kx^{\frac{3}{2}}$ only State $y = 8x^{\frac{3}{2}} - 14$ are single power of x		3 3	A1	Obtain $8x^{\frac{1}{2}}$, with or without + c
$\Rightarrow c = -14$ Hence $y = 8x^{\frac{3}{2}} - 14$ A1 $$ A1 6 Bar of the formula of the		$y = 8x^{\overline{2}} + c \Longrightarrow 50 = 8 \times 4^{\overline{2}} + c$	M1	Use (4, 50) to find <i>c</i>
Hence $y = 8x^2 - 14$ A1 6 State $y = 8x^2 - 14$ aef, as long as single power of x 6		$\Rightarrow c = -14$	A1√	Obtain $c = -14$, following $kx^{\frac{3}{2}}$ only
6		Hence $y = 8x^2 - 14$	A1 6	State $y = 8x^{\frac{1}{2}} - 14$ aef, as long as single power of x
			6	

Mark Scheme

			Mark	Total	
6	(i)	$u_1 = 7$	B1		Correct u_1
	()	$u_2 = 9, u_3 = 11$	B1	2	Correct u_2 and u_3
	(ii)	Arithmetic Progression	B1	1	Any mention of arithmetic
	(iii)	$\frac{1}{2}N(14 + (N-1) \times 2) = 2200$	B1		Correct interpretation of sigma notation
			M1		Attempt sum of AP, and equate to 2200
		$N^2 + 6N - 2200 = 0$	A1		Correct (unsimplified) equation
		(N - 44)(N + 50) = 0	M1		Attempt to solve 3 term quadratic in N
		hence $N = 44$	A1	5	Obtain $N = 44$ only $(N = 44$ www is full marks)
				8	
7	(i)	Some of the area is below the <i>x</i> -axis	B1	1	Refer to area / curve below <i>x</i> -axis or 'negative
	(ii)		M1		Attempt integration with any one term correct
	(11)		A1		Obtain $\frac{1}{3}x^3 - \frac{3}{2}x^2$
		$\left[\frac{1}{3}x^3 - \frac{3}{2}x^2\right]_0^3 = \left(9 - \frac{27}{2}\right) - \left(0 - 0\right)$	M1		Use limits 3 (and 0) – correct order / subtraction
		$= -4\frac{1}{2}$	A1		Obtain (-)4 ¹ / ₂
		$\left[\frac{1}{3}x^3 - \frac{3}{2}x^2\right]_3^5 = \left(\frac{125}{3} - \frac{75}{2}\right) - \left(9 - \frac{27}{2}\right)$	M1		Use limits 5 and 3 – correct order / subtraction
		$=8\frac{2}{3}$	A1		Obtain $8^2/_3$ (allow 8.7 or better)
		Hence total area is $13^{1}/_{6}$	A1	7	Obtain total area as $13^{1}/_{6}$, or exact equiv
					SD: if no longer [f(u) du then D1 for using
					[0, 3] and [3, 5]
				8	
8	(i)	$u = 10 \times 0.8^3$	M1		Attempt using ar^{n-1}
0	(1)	$u_4 = 1000.8$ = 5.12		2	Obtain 5 12 aef
		5.12	111	-	obtain 5.12 act
	(;;)	$10(1-0.8^{20})$	M1		Attempt use of correct sum formula for a CP
	(11)	$S_{20} = \frac{1}{1 - 0.8}$	IVII		Attempt use of correct sum formula for a GP
		= 49.4	A1	2	Obtain 49.4
	(iii)	$10 - 10(1 - 0.8^{N}) < 0.01$	M1		Attempt S_{α} using a
	()	$\frac{1}{1-0.8} - \frac{1}{(1-0.8)} < 0.01$			$1 \omega 0 \frac{1-r}{1-r}$
			A1		Obtain $S_{\infty} = 50$, or unsimplified equiv
		$50 - 50(1 - 0.8^N) < 0.01$	M1		Link $S_{\infty} - S_N$ to 0.01 and attempt to rearrange
		$0.8^N < 0.0002$ A.G.	A1		Show given inequality convincingly
		$\log 0.8^N < \log 0.0002$	M1		Introduce logarithms on both sides
		$N \log 0.8 < \log 0.0002$	M1		Use $\log a^b = b \log a$, and attempt to find N
	N >	38.169, hence $N = 39$	A1	7	Obtain $N = 39$ only
			I	11	

			Mark	Fotal	
9	(i) (ii)	(90°, 2), (-90°, -2) (a) 180 - α (b) - α or α - 180	B1 B1 B1 B1	2 1 1	State at least 2 correct values State all 4 correct values (radians is B1 B0) State 180 - α State - α or α - 180 (radians or unsimplified is B1B0)
	(iii)	$2\sin x = 2 - 3\cos^{2} x$ $2\sin x = 2 - 3(1 - \sin^{2} x)$ $3\sin^{2} x - 2\sin x - 1 = 0$ $(3\sin x + 1)(\sin x - 1) = 0$ $\sin x = -\frac{1}{3}, \sin x = 1$ $x = -19.5^{\circ}, -161^{\circ}, 90^{\circ}$	M1 A1 A1 A1√ A1	6	Attempt use of $\cos^2 x = 1 - \sin^2 x$ Obtain $3\sin^2 x - 2\sin x - 1 = 0$ aef with no brackets Attempt to solve 3 term quadratic in sinx Obtain $x = -19.5^{\circ}$ Obtain second correct answer in range, following their x Obtain 90° (radians or extra answers is max 5 out of 6) SR: answer only (and no extras) is B1 B1 $\sqrt{B1}$
			1	10	
10	(i)	$(2x+5)^4 = (2x)^4 + 4(2x)^3 5 + 6(2x)^2 5^2 + 4(2x) 5^3 + 5^4$ $= 16x^4 + 160x^3 + 600x^2 + 1000x + 625$	M1* M1* A1dep A1)* 4	Attempt expansion involving powers of $2x$ and 5 (at least 4 terms) Attempt coefficients of 1, 4, 6, 4, 1 Obtain two correct terms Obtain a fully correct expansion
	(ii)	$(2x+5)^4 - (2x-5)^4 = 320x^3 + 2000x$	M1 A1	2	Identify relevant terms (and no others) by sign change oe Obtain $320x^3 + 2000x$ cwo
	(iii)	$9^4 - (-1)^4 = 6560 \text{ and } 7360 - 800 = 6560 \text{ A.G.}$ $320x^3 - 1680x + 800 = 0$ $4x^3 - 21x + 10 = 0$ $(x - 2)(4x^2 + 8x - 5) = 0$ (x - 2)(2x - 1)(2x + 5) = 0 Hence $x = \frac{1}{2}, x = -\frac{21}{2}$	B1 M1 A1√ A1 M1 A1	6	Confirm root, at any point Attempt complete division by $(x - 2)$ or equiv Obtain quotient of $ax^2 + 2ax + k$, where <i>a</i> is their coeff of x^3 Obtain $(4x^2 + 8x - 5)$ (or multiple thereof) Attempt to solve quadratic Obtain $x = \frac{1}{2}$, $x = -\frac{2}{2}$
			[1	12	SR: answer only is B1 B1